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Highest audible frequency correlates
with head size in mammals

Highest Audible Frequency at 60 dB SPL (in kHz)
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Sivian & White (1933) JASA

Sivian & White 1933
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Two ways to define a threshold

e minimum audible field (MAF)

—in terms of the intensity of the sound
field in which the observer's head is
placed

e minimum audible pressure (MAP)

—in terms of the pressure amplitude at

the observer's ear drum

e MAF includes effect of head, pinna &
ear canal




MAP vs. MAF
Accounting for the difference
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Determine a threshold for a 2-kHz

sinusoid using a loudspeaker

Now measure the sound level

at ear canal (MAP):
15 dB SPL
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at head position without
head (MAF): 0 dB SPL




Accounting for MAP/MAF
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Accounting for the ‘bowl’

Combine head+pinna+canal+middle ear
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Detection of sinusoids in
cochlea
Threshold

R A /

X

e How big a sinusoid do we have to put into our
system for it to be detectable above some
threshold?

e Main assumption: once cochlear pressure reaches
a particular value, the basilar membrane moves
sufficiently to make the nerves fire.
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Detection of sinusoids in

cochlea
Threshold
R A /
X = Thkeeefpeee
4 \

e A mid frequency sinusoid can be
quite small because the outer and
middle ears amplify the sound
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Detection of sinusoids in
cochlea

Threshold

‘ X

F

¢ A low frequency (or high
frequency) sinusoid needs to be
larger because the outer and
middle ears do not amplify those

Detection of sinusoids in
A cochlea Threshold
R
X
“||III” .

N,

e So, if the shape of the threshold curve
is strongly affected by the efficiency of
energy transfer into the cochlea ...

e The threshold curve should look like this
response turned upside-down: like a

frequencies so much bowl.
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The Phon scale of loudness

¢ "A sound has a loudness of X phons
if it is equally as loud as a sinewave
of X dB SPL at 1kHZz"
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e.g. A 62.5Hz sinusoid
at 60dB SPL has a
loudness of 40 phons,
because it is equally as
loud as a 40dB SPL
sinusoid at 1kHz
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Equal loudness contours
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From Suzuki & Takeshima (2004) JASA
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So now we can specify the
loudness of sounds in terms of
the level of a 1 kHz tone ...

but how loud
is a 1kHz tone
at, say,
40 dB SPL?
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Perceived loudness is (roughly)
logarithmically related to pressure

equal ratios, e.g. 3.2-1.6-0.8-0.4-0.2-0.1 Pa

"'H

equal increments, e.g. 3-2.5-2-1.5-1-0.5 Pa
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Kids love me.

Direct scaling procedures: Alternatives to magnitude
Magnitude Estimation estimation
, e Magnitude production
* Here's a S_ta‘ndar,d sound whose - Here’s a sound whose loudness we’ll call
loudness is '100 100
» Here’s another sound — Adjust the sound until its loudness is
- If it sounds twice as loud, call it 200 400
— If it sounds half as loud call it 50 e Cross-modality matching
e In short - assign numbers - Adjust this light until it as bright as the
according to a ratio scale sound is loud




Magnitude estimates are well ... which are linear on log-log
fit by power functions scales
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... SO also on log-dB scales
1 sone = 40 phon

Strict power law not quite right
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How does loudness for noises
depend on bandwidth?

Vary bandwidth of noise keeping total
rms level constant

frequency 3

Loudness for noise depends on

bandwidth
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Discrimination of changes in
intensity

e Typically done as adaptive forced-
choice task

e Two steady-state tones or noises,
differing only in intensity
e Which tone is louder?

e People can, in ideal circumstances,
distinguish sounds different by = 1-2
dB.
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Changes in intensity

20-dB attenuation
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Across level, the jnd is, roughly speaking,

a constant proportion, not a constant amount. 36




Weber’s Law

e Let Ap be the minimal detectable change
in pressure, or just noticeable difference

(ind)

e Weber’s Law: the jnd is a constant
proportion of the stimulus value
Ap = k x P where k is a constant
Ap/P =k

e Like money!

e Also a constant in terms of dB
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The near miss to Weber’s Law in
intensity jnds for pure tones
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Intensity jnds

e For pure tones, the jnd for intensity
decreases with increasing intensity
(the near miss to Weber's Law)

For wide-band noises, Weber’s Law
(pretty much) holds

Probably to do with spread of
excitation -

— See Plack The Sense of Hearing Ch 6.3




